Santa Barbara Channel Marine Biodiversity Observation Network

Marine Science Institute
University of California Santa Barbara

Who we are

Principal/Associate Investigators

Marine Science Institute
Robert Miller, Andrew Rassweiler, Daniel Reed, Milton Love

Ecology Evolution and Marine Biology
Craig Carlson, Deborah Iglesias-Rodriguez, Doug McCauley

GeographyDavid Siegel, Phaedon Kyriakidis

Electrical and Computer Engineering

BS Manjunath

USGSKevin Lafferty

UCSD - SIO John Hildebrand

NOAA – NMFS SWFSC Andrew Thompson

Partners

Channel Islands National Marine Sanctuary
Channel Islands National Park
Santa Barbara Coastal Long Term Ecological Research Program
Plumes and Blooms
Southern California Coastal Water Research Project
Southern California Coastal Ocean Observing System (SCCOOS)
Gray Whales Count
San Onofre Nuclear Generating Station Mitigation Monitoring
CalCOFI

Existing Monitoring Partners

Santa Barbara Channel, California

CINMS Boundary

USGS Scuba-ROV Surveys

NOAA - National Oceanic & Atmospheric Administration NMFS - National Marine Fisheries Service SIO - Scripps Institute of Oceanography HAB - Harmful Algal Blooms CDIP - Coastal Data Information Program HF - High Frequency Training for Students SONGS - San Onofre Nuclear Generating Station SBC LTER - Santa Barbara Coastal Long-term **Ecological Research** CNIP - Channel Islands National Park MARINe - Multi-Agency Rocky Intertidal Network CINMS - Channel Islands National Marine Sanctuary ROV - Remotely Operated Vehicle USGS - United States Geologic Survey MPA - Marine Protected Area SMCA - State Marine Conservation Area SMP - State Marine Park SMR - State Marine Reserve SMRMA - State Marine Recreational Management Area

Blue = Pelagic, Black = Oceanography, Red = Intertidal, Yellow = Benthic/Subtidal

SONGS Estuary Monitoring

Plumes and Blooms

SANTA BARBARA CHANNEL (SBC) BON

Goals:

- 1. Integrate biodiversity data to enable inferences about regional biodiversity
- Develop advanced methods in optical and acoustic imaging and genomics for monitoring biodiversity in partnership with ongoing monitoring and research programs
- 3. Implement a tradeoff framework that optimizes allocation of sampling effort

Complex and multiscale patterns of community structure

Communities are spatially structured at **multiple scales**. The spatial variation in community composition is **beta diversity**

variation in community composition

38% — Biogeographic trend

11% — Positive spatial structures

7% — Negative spatial structures

- Random noise (error)

Lamy et al., in prep

What are the ecological processes and environmental drivers underlying each of these scales?

Average temperature from 2005-2014

Identifying environmental drivers

- Physical environment (SST, Bathymetry, substrate, slope)
- Pelagic primary production (Chl a)
- Benthic primary production (Kelp biomass)
- Disturbance regime (wave height, ENSO)
- Connectivity source and destination strength

Landsat Kelp Forest Biomass

- 30 m resolution multispectral imagery
- Kelp reflectance calibrated to biomass measured by divers in SBC LTER long-term plots
- SBC time series includes ~ 6-8 usable images per year since 1984 from central CA to Baja CA

Canopy biomass of *Macrocystis pyrifera* (top) can be quantified from Landsat 5 imagery (bottom).

Hyperspectral aerial flights conducted 3x year⁻¹ in 2013 – 2015 using the AVIRIS sensor in HyspIRI preparatory campaign

Thomas Bell, David Siegel 0.03 $r^2 = 0.71$ p < 0.001**AVIRIS CHI:C** 0.02 Chl:C estimated from hyperspectral images closely 0.01 resembles Chl:C measured in the laboratory 0.01 0.02 0.03

Laboratory Chl:C

Regional patterns of kelp Chlorophyll mirror the eastwest gradient of temperature and nutrients in the Santa Barbara Channel

Physiological Condition of Giant Kelp Canopy June 2015

Bell et al. 2015

Responses of kelp forest ecosystems to climate change

Extreme warming event allowed us to test IPCC predictions of kelp forest decline in response to sea temperature extremes

- Biomass of giant kelp and most kelp forest species of macroalgae, invertebrates and fish remained within their historical range in spite of 34 months of extraordinarily warm, nutrient depleted conditions
- Sea stars and sea urchins, key predators and grazers, declined due to disease

Data from satellite imagery used to extend spatial and temporal scales of analyses

Longer & more spatially comprehensive data from satellites confirm the patterns documented by divers and instrumentation at our study sites

 Results reinforce the need for long-term biodiversity data and expose the risk of relying on species with seemingly sensitive traits as sentinels for ecosystem responses to climate change

Goal 2. Develop advanced methods in optical and acoustic imaging and genomics for monitoring biodiversity

Optical Imaging

Deep learning for image analysis

UCSB Center for Bio-image Informatics

Benefits

Fully automated - no feature selection

Fast classification on GPUs

High accuracy

Generalizes to any data

Convolutional Neural Network (CNN)

Convolutional levels: Feature extraction typically required an engineer to select or develop a feature descriptor with CNNs it is learned from data.

Classifier: fully connected layers

Percent cover at 95% goodness

Semantic segmentation

Dmitry Federov, Kris Kivekval, BS Manjunath

Segmentation at 95% goodness

Goal 2. Develop advanced methods in optical and acoustic imaging and genomics for monitoring biodiversity

Targets:

- Microbes
- Microplankton
- Ichthyoplankton
- eDNA

Time-series shows repeatable, seasonal surface bacterioplankton communities

- Time-series on Plumes & Blooms cruise line
- •44 cruises, 2010-14
- Profile to 300m at center station
- new EarthMicrobiome Project16S rDNA primers

These dominant OTUs have clear, distinct correlations to bottom-up controls

Now comparing 4 primer sets to examine relative biases in this system

Primer set	Phylogenetic range	16S region	Reference	Why
515F-Y 806R-B	Bacteria & archaea	V4	Earth Microbiome Project; Apprill et al. 2015; Parada et al. 2015	Our existing illumina primer set
27F 338R	Bacteria	V12	Fortunato et al. 2012 (used in Wear et al. 2015)	Our old Roche-454 primer set
341F 785R	Bacteria & (some?) archaea	V34	Klindworth et al. 2012	C. Nelson at UH sees good results
515F-Y 926R	Bacteria & archaea	V45	Parada et al. 2015	Worked well in nearby basin

We are using a site-specific 16S clone mock community of known composition and ~ 90 unique environmental (mixed community) samples to assess the primers

Emma Wear, Craig Carlson

Fernanda Henderikx Freitas David Siegel, Libe Washburn Stuart Halewood, Erik Stassinos

2012 2013

What drives Phytoplankton changes?

Santa Barbara Channel MBON IMS

- Adopted community protocols and standards per LTER
 - Relational Database Management System -> XML
 - Structural quality control
 - Local catalog
- Federation mechanism DMAC group

DataONE
Member Node?

IOOS, Marine Cadastre, NODC, etc.

SBC MBON Partner collaborations

SCCWRP/NOAA SWFSC

- Ichthyoplankton metabarcoding postdoc
- Dovi Kacev started fall 2015

NOAA NCCOS

- Spatial linkage of physical habitat variables with biodiversity to improve forecasting ability
- NCCOS lead Brian Kinlan
- Rhiannon Rognstad starting Aug 2016